

A Level Physics

17th May 2021 – Mixed Physics Topics

Suitable for ALL exam boards

Don't forget to **subscribe** on **YouTube** and turn on **notification** to be reminded about the **weekly livestreams** to support you as you prepare for any exams.

Question taken from:

Edexcel IAL Physics – Jan 2019 – Unit 5: Physics from Creation to Collapse – Questions 1 to 10

SECTION A

Answer ALL questions.

For questions 1–10, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ₩ and then mark your new answer with a cross ⋈.

1 A standard candle is a stellar object of known					
	×	A	distance.		
	×	В	luminosity.		
	×	C	radiation flux.		
	×	D	surface temperature.		
			(Total for Question 1 = 1 mark)		
2			is a radioactive isotope of lead. This isotope decays by emitting a particle X by the equation		
			$^{214}_{82}\text{Pb} \rightarrow ^{214}_{83}\text{Bi} + \text{X}$		
Particle X is					
	\times	A	an alpha particle.		
	×	B	an electron.		
	×	C	a neutron.		
	×	D	a positron.		
_			(Total for Question 2 = 1 mark)		
3	Wh	nich	of the following statements is a correct description of the binding energy of a nucleus?		
	×	A	The energy released when the nucleus forms from individual nucleons.		
	×	В	The energy released when radiation is emitted from the nucleus.		
	×	C	The energy required to overcome the force between nuclei.		
	×	D	The energy required to remove a nucleon from the nucleus.		
			(Total for Question 3 = 1 mark)		

4	Two simple harmonic oscillators have the same frequency.							
	The first has a mass of $0.50\mathrm{kg}$ and an amplitude of $30\mathrm{cm}$. Its energy of oscillation is E_0 . The second has a mass of $0.25\mathrm{kg}$ and an amplitude of $60\mathrm{cm}$.							
	What is the energy of oscillation of the second oscillator?							
	\triangle A $E_0/4$							
	\square B $E_0/2$							
	\square C E_0							
	\square D $2E_0$							
	(Total for Question 4 = 1 mark)							
5	The half-life of protactinium is 70 s.							
	After which of the times below would the activity of a sample of protactinium have decreased to less than 2% of its initial value?							
	☑ A 70s							
	☑ B 210s							
	☑ C 350s							
	☑ D 420 s							
	(Total for Question 5 = 1 mark)							
6	Quasars are thought to be discs of matter moving around black holes. Light received from all quasars shows large red shifts.							
	Which of the following can be concluded from this?							
	A Quasars are accelerating away from the Earth at a large rate.							
	■ B Quasars are accelerating towards the Earth at a large rate.							
	C Quasars are moving away from the Earth very quickly.							
	■ D Quasars are moving towards the Earth very quickly.							
	(Total for Question 6 = 1 mark)							

7	The gravitational field strength on the surface of Mars is g. The Moon has about the same density as Mars but only half the radius.					
	What is the gravitational field strength on the surface of the Moon?					
		A	g/4			
		В	g/2			
		C	2g			
		D	4g			
			(Total for Question 7 = 1 mark)			
8	The Hubble constant has been determined to be $2.2 \times 10^{-18} \ s^{-1}$, although there is a large uncertainty in this value. Astronomers have used this value to calculate the age of the universe.					
	Previous data gave a value for the Hubble constant of 2.0×10^{-18} s ⁻¹ . The age of the universe calculated from this value would be					
	\boxtimes	A	20% smaller.			
	\boxtimes	B	10% smaller.			
	\boxtimes	C	10% bigger.			
	\boxtimes	D	20% bigger.			
			(Total for Question 8 = 1 mark)			
9	Cosmologists predict a number of alternatives for the future evolution of the universe.					
	Which of the following statements describes an open universe?					
	\boxtimes	A	The density of the universe equals the critical density.			
	\boxtimes	В	The universe eventually reaches a maximum size.			
	\boxtimes	C	The universe will keep on expanding forever.			
		D	We cannot predict the eventual fate of the universe.			
			(Total for Question $9 = 1 \text{ mark}$)			

10	A star has a surface temperature of 5700 K. The surface temperature increases to 6000 K and the surface area stays constant. By what factor would the luminosity of the star change?							
	☑ B 0.9							
	☑ D 1.2							
		(Total for Question 10 = 1 mark)						
		The state of the s						

TOTAL FOR SECTION A = 10 MARKS

