Circular Motion 2

Have a go at the following exam questions.

OCR, G484, JUNE 2010

2 (a) Fig. 2.1 shows an aeroplane flying in a horizontal circle at constant speed. The weight of the aeroplane is *W* and *L* is the lift force acting at right angles to the wings.

Fig. 2.1

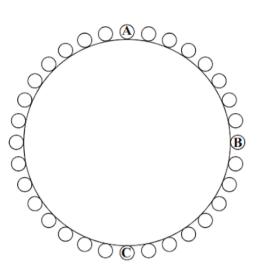
		F19. 2.1				
(i)	Explain how the lift force L maintains the aeroplane flying in a horizontal circle.					
		[2]				
(ii)	Th	e aeroplane of mass $1.2 \times 10^5 \text{kg}$ is flying in a horizontal circle of radius 2.0km .				
		e centripetal force acting on the aeroplane is $1.8 \times 10^6 \text{N}$. Calculate the speed of the roplane.				
		speed = ms ⁻¹ [2]				
(c)	The satellites used in television communication systems are usually placed in geos orbits.					
	In y	In your answer, you should use appropriate technical words spelled correctly.				
	(i)	State two features of geostationary orbits.				
		1				
		2				

OCR, G484, JANUARY 2011

2	(a)	(i)	 (i) State, in terms of force, the conditions necessary for an object to move in a circulat constant speed. 			
				[1]		
		(ii)	Explain why this object is accelerating. State the direction of the acceleration.	of the acceleration.		
				[2]		
Eduqo	ıs, A4	120U 1	0-1, JUNE 2018			
2.	(a)	(i)	Define the angular velocity, ω , for a body moving in a circle.	[1]		
		(ii)	Two equations giving the acceleration of a body moving at constant speed in circle are:	ı a		
			$a = \frac{v^2}{r}$ and $a = r\omega^2$.			
			Show clearly that the equations are equivalent.	[2]		
	(b)	A n hav Mai	moon called <i>Deimos</i> orbits Mars in a circular path of radius 23500 km. Astronome calculated the mass of Deimos to be 1.48×10^{15} kg, and the force exerted on it is to be 1.15×10^{14} N.	ers by		
		(i)	Calculate the speed of Deimos around Mars.	[2]		
		•				

EDEXCEL, 6PH04/01, JANUARY 2013

13 The London Eye consists of a large vertical circle with 32 equally-spaced passenger cabins attached to it. The wheel rotates so that each cabin has a constant speed of 0.26 m s⁻¹ and moves around a circle of radius 61 m.



(a) Calculate the time taken for each cabin to make one	complete revolution.	(2)
Th) Coloulate the contrinctal force acting an each achin	Time =	
(b) Calculate the centripetal force acting on each cabin. $mass\ of\ cabin = 9.7\times 10^3\ kg$		(2)
	entripetal force =	

(c) (i) The diagram shows just the circle and the cabins.

Draw arrows to show the direction of the centripetal force acting on a person in a cabin when the person is at each of positions A, B and C.

*(ii) As the person in a cabin moves around the circle, the normal contact force between the person and the cabin varies.

State the position at which this force will be a maximum and the position at which it will be a minimum. Explain your answers.

(Total for Question 13 = 9 marks)

(1)

(4)

