

A Level Physics

22nd Mar 2021 – Astrophysics

Suitable for ALL exam boards

This session will look at some questions about space.

Don't forget to **subscribe** on **YouTube** and turn on **notification** to be reminded about the **weekly livestreams** to support you as you prepare for any exams.

Question taken from:

OCR A Physics - Jan 2013 - G485 - Question 9

OCR A Physics - Jun 2013 - G485 - Question 10

9	(a)	State Olbers' paradox and the two assumptions made about the Universe.
		[3]
	(b)	State Hubble's law and explain how it resolves Olbers' paradox.
	(~)	
		[2]
	(c)	A galaxy at a distance of 1.4 \times 10 ²⁵ m is observed to be receding from the Earth at a velocity of 3.4 \times 10 ⁷ m s ⁻¹ .
		(i) Calculate the Hubble constant H_0 based on this data.

 $H_0 =$ unit [3]

(iii	L Cationata
) Estimate

the age in years of the Universe 1 year = 3.2×10^7 s

the maximum distance in parsec (pc) we can observe from the Earth.

1 pc =
$$3.1 \times 10^{16}$$
 m

[Total: 12]

10 (a) Calculate the distance of 1 light-year (ly) in metres.

(b) Fig. 10.1 shows an incomplete diagram drawn by a student to show what is meant by a distance of 1 parsec (pc).

Fig. 10.1

Complete Fig. 10.1 by showing the distances of 1 pc and 1 AU, and the parallax angle of 1 second of arc (1"). [1]

(c)	A re	ecent supernova, SN2011fe, in the Pinwheel galaxy, M101, released 10^{44} J of energy. The ternova is 2.1 $ imes$ 10^7 ly away.	
	(i)	Calculate the distance of this supernova in pc.	
		$1 \text{ pc} = 3.1 \times 10^{16} \text{m}$	
		distance = pc [2]	
	(ii)	Our Sun radiates energy at a rate of 4×10^{26} W. Estimate the time in years that it would take the Sun to release the same energy as the supernova SN2011fe.	
		time = y [2]	
(d)	(d) One of the possible remnants of a supernova event is a black hole. State two p black hole.		
		[2]	
		[Total: 8]	

